定义
法线贴图就是在原物体的凹凸表面的每个点上均作法线,通过RGB颜色通道来标记法线的方向,你可以把它理解成与原凹凸表面平行的另一个不同的表面,但实际上它又只是一个光滑的平面。对于视觉效果而言,它的效率比原有的凹凸表面更高,若在特定位置上应用光源,可以让细节程度较低的表面生成高细节程度的精确光照方向和反射效果。
为了提升模型表现细节而又不增加性能消耗,所以不选择提高模型的面数,而是给模型的材质Shader中使用上法线贴图(Normal Map),通过更改模型上的点的法线方向,增加光影凹凸效果,从而提升模型表现细节。使用法线贴图能使一个三角面(平面)表现出凹凸的视觉效果!
使用法线贴图
法线(Normal)每个轴向的取值范围为-1到1,而颜色值(Pixel)的取值范围为0到1。所以在存储(法线方向存储为法线贴图)和使用(在程序中将法线贴图每个点的颜色转变为法线方向)时,存在一个简单的计算转换过程。
- 存储法线贴图 Pixel = ( Normal + 1 ) / 2
- 使用法线贴图 Normal = Pixel * 2 - 1
因为法线贴图使用的是切线空间,所以以上转换也是在切线空间下进行的。使用中还要注意光照方向的空间转换问题。
效果
和不带法线贴图对比
代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
Shader "WCC/Texture NormalMap" { Properties{ _MainTex("Main Tex", 2D) = "white"{} // 纹理贴图 _Color("Color", Color) = (1,1,1,1) // 控制纹理贴图的颜色 _NormalMap("Normal Map", 2D) = "bump"{} // 表示当该位置没有指定任何法线贴图时,就使用模型顶点自带的法线 _BumpScale("Bump Scale", Float) = 1 // 法线贴图的凹凸参数。为0表示使用模型原来的发现,为1表示使用法线贴图中的值。大于1则凹凸程度更大。 } SubShader{ Pass { // 只有定义了正确的LightMode才能得到一些Unity的内置光照变量 Tags{"LightMode" = "ForwardBase"} CGPROGRAM // 包含unity的内置的文件,才可以使用Unity内置的一些变量 #include "Lighting.cginc" // 取得第一个直射光的颜色_LightColor0 第一个直射光的位置_WorldSpaceLightPos0(即方向) #pragma vertex vert #pragma fragment frag fixed4 _Color; sampler2D _MainTex; float4 _MainTex_ST; // 命名是固定的贴图名+后缀"_ST",4个值前两个xy表示缩放,后两个zw表示偏移 sampler2D _NormalMap; float4 _NormalMap_ST; // 命名是固定的贴图名+后缀"_ST",4个值前两个xy表示缩放,后两个zw表示偏移 float _BumpScale; struct a2v { float4 vertex : POSITION; // 告诉Unity把模型空间下的顶点坐标填充给vertex属性 float3 normal : NORMAL; // 不再使用模型自带的法线。保留该变量是因为切线空间是通过(模型里的)法线和(模型里的)切线确定的。 float4 tangent : TANGENT; // tangent.w用来确定切线空间中坐标轴的方向的。 float4 texcoord : TEXCOORD0; }; struct v2f { float4 position : SV_POSITION; //float3 worldNormal : TEXCOORD0; // 不再使用世界空间下的法线方向 float3 lightDir : TEXCOORD0; // 切线空间下,平行光的方向 float2 uv : TEXCOORD1; // 存储MainTex的纹理坐标 float2 normalMapUV : TEXCOORD2; // 存储NormalMap的纹理坐标 }; // 计算顶点坐标从模型坐标系转换到裁剪面坐标系 v2f vert(a2v v) { v2f f; //顶点坐标由模型空间转世界空间 f.position = UnityObjectToClipPos(v.vertex); //f.uv = v.texcoord.xy; // 不使用缩放和偏移 f.uv = v.texcoord.xy * _MainTex_ST.xy + _MainTex_ST.zw; // 贴图的纹理坐标 //同下 Unity内置函数 // f.uv = TRANSFORM_TEX(v.texcoord, _MainTex); f.normalMapUV = v.texcoord.xy * _NormalMap_ST.xy + _NormalMap_ST.zw; // 法线贴图的纹理坐标 //同下 Unity内置函数 // f.normalMapUV = TRANSFORM_TEX(v.texcoord, _NormalMap); TANGENT_SPACE_ROTATION; // 调用这个宏会得到一个矩阵rotation,该矩阵用来把模型空间下的方向转换为切线空间下 //ObjSpaceLightDir(v.vertex); // 得到模型空间下的平行光方向 f.lightDir = mul(rotation, ObjSpaceLightDir(v.vertex)); // 切线空间下,平行光的方向 return f; } // 要把所有跟法线方向有关的运算,都放到切线空间下。因为从法线贴图中取得的法线方向是在切线空间下的。 fixed4 frag(v2f f) : SV_Target { // 法线方向。从法线贴图中获取。法线贴图的颜色值 --> 法线方向 //fixed3 normalDir = normalize(f.worldNormal); // 不再使用模型自带的法线 fixed4 normalColor = tex2D(_NormalMap, f.normalMapUV); // 在法线贴图中的颜色值 //fixed3 tangentNormal = normalize(normalColor.xyz * 2 - 1); // 切线空间下的法线方向,发现计算得到的法线不正确! fixed3 tangentNormal = UnpackNormal(normalColor); // 使用Unity内置的方法,从颜色值得到法线在切线空间的方向 tangentNormal.xy = tangentNormal.xy * _BumpScale; // 控制凹凸程度 tangentNormal = normalize(tangentNormal); // 切线空间下的光照方向 fixed3 lightDir = normalize(f.lightDir); // 纹理坐标对应的纹理图片上的点的颜色 fixed3 texColor = tex2D(_MainTex, f.uv) * _Color.rgb; //半兰伯特漫反射 fixed3 diffuse = _LightColor0.rgb * (dot(tangentNormal, lightDir) * 0.5 + 0.5) * texColor; //这里将环境光也*texColor 是为了环境光的值和texColor颜色融合,就能让texColor也变得亮 fixed3 color = diffuse + UNITY_LIGHTMODEL_AMBIENT.rgb * texColor; return fixed4(color, 1); } ENDCG } } FallBack "Diffuse" } |
- 本文固定链接: http://www.u3d8.com/?p=2655
- 转载请注明: 网虫虫 在 u3d8.com 发表过